

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE INGENIERÍA MOCHIS

LICENCIATURA EN INGENIERÍA CIVIL

ASIGNATURA:

Ingeniería Ambiental

1. INFORMACIÓN GENERAL:

Tipo de asignatura:	Obligatoria: X		Selectiva:		
Grupo disciplinar y su objetivo:	Otros Cursos:				
	Complementar la formación de los estudiantes con un cuerpo de				
	conocimientos no incluidos en los otros grupos disciplinarios, pero				
	necesarios para desarrollar habilidades administrativas, contables,				
	financieras, económicas y ambientales entre otras, necesarias para				
	ejercer la profesión del Ingeni	ero Civil.			
Área académica:	Ambiental.				
Objetivo general de la asignatura:	Identificar los principales problemas ambientales, comprender los				
	procesos físicos, químicos y biológicos asociados y conocer la aplicación				
	de las tecnologías existentes para la minimización de los mismos.				
SEMESTRE:	8				
Créditos: 8	Duración hora/sem/mes:	4 Teoría	a: 60	Práctica: 0	
Conocimiento previo necesario:	Química, Física				
Proporciona bases para:	Tratamiento de Aguas Residuales, Potabilización de Aguas, Tópicos de				
	Ingeniería Ambiental				
Fecha de última actualización:	Agosto de 2006				

2. CONTENIDOS:

2. CONTENIDOS.						
Unidad	Temas	Horas				
ı	Conceptos Generales	5				
	1.1. Definición de Ingeniería Ambiental. Campos de Aplicación					
	1.2. Necesidades de la comunidad					
	1.3. Contaminación del agua					
	1.4. Contaminación del aire					
	1.5. Contaminación del suelo					
II	2. Balance de masa y energía	6				
	2.1. Introducción					
	2.2. Unidades de medida					
	2.3. Balance de materia					
	2.4. Fundamentos de energía					
Ш	3. Calidad del agua	9				
	3.1. Introducción					
	3.2. Parámetros de mayor importancia					
	3.3. Propiedades físicas del agua					
	3.4. Propiedades químicas del agua (contenido orgánico y mineral)					
	3.5. Propiedades Biológicas del agua (contenido de microorganismos					
	indicadores y patógenos)					
	3.6. Reglamentación y legislaciones vigentes que enmarcan las					
	características permisibles tolerables en la calidad del agua					
IV	4. Biología Acuática y Conceptos básicos de Ecología					

	4.1. Introducción	
	4.2. Crecimiento Poblacional	
	4.3. Conceptos de Ecología	
	4.4. Energía y materia en el Ecosistema	
	4.5. Bioacumulación	
V	5. Autopurificación	8
	5.1. Efecto de Desechos Demandantes de Oxígeno en los Ríos	
	5.2. Desoxigenación	
	5.3. Reaereación	
	5.4. Curva de pandeo de Oxígeno	
VI	6. Eutroficación	5
	6.1. Fenómeno de eutroficación	
	6.2. Luz y zonificación en lagos	
	6.3. Densidad del agua y estratificación térmica	
	6.4. Ley del mínimo de Liebig	
VII	7. Plantas de Tratamiento de Aguas Residuales	10
	7.1. Introducción	
	7.2. Pretratamiento	
	7.3. Tratamiento primario	
	7.4. Tratamiento secundario	
	7.5. Tratamiento terciario o avanzado	
	7.6. Tratamiento físico y químico	
	7.7. Cloración	
	7.8. Tratamiento de lodos	
VIII	8. Desechos sólidos	10
	8.1. Introducción	
	8.2. Definición	
	8.3. Caracterización de residuos sólidos	
	8.4. Problemática Ambiental Regional provocada por los Desechos Sólidos	
	8.5. Recolección y Transporte	
	8.6. Disposición y tratamiento	
IX	9. Contaminantes Átmosféricos	7
	9.1. Estructura de la atmósfera	
	9.2. Composición química de la atmósfera	
	9.3. Dispersión de contaminantes	
	Total	60

3. SUGERENCIAS METODOLÓGICAS

Exposición del profesor, trabajo individual y/o de grupo. Exposición de estudiantes. Visitas a Plantas de Tratamiento de Aguas Residuales, Relleno Sanitario, recicladoras de la localidad.

4. CRITERIOS DE EVALUACIÓN

Exámenes parciales 70%; asistencia y participación 10%; tareas 10%; reporte escrito de visitas 10%.

5. FUENTES DE INFORMACIÓN BÀSICA Y COMPLEMENTARIA

- 1. Arellano Díaz, Javier, Introducción a la Ingeniería Ambiental, Editorial Alfaomega, 2002
- 2. Ármalo, R.S., *Tratamiento de Aguas Residuales*, Reverte 1993
- 3. Davis-Cornwell, Introduction to Environmental Engineering, Editorial Mc Graw Hill, 1985, 2da edición
- 4. Departamento de Sanidad del Estado de Nueva York, *Manual de Tratamiento de Aguas Negras*, Editorial Limusa. 2004.
- 5. Hammer, Mark J., Water and Wastewater Technology, Editorial John WilWy and Sons, Inc., 1997
- 6. Henry-Heinke, Ingeniería Ambiental, Segunda Edición, Editorial Prentice Hall, 1996.
- 7. Mackenzie, L. Davis-Masten, Susan J., Ingeniería y Ciencias Ambientales, Editorial Mc Graw Hill, 2004
- 8. McJunkin, F.E., Agua y salud humana, Editorial Limusa 1988, 2da. Reimpresión
- 9. Metcalf & Eddy Inc., Wastewater Engineering, Treatment, Disposal and Reuse, Editorial Mc Graw Hill
- 10. Mihelcic, Fundamentos de Ingeniería Ambiental, Editorial Limusa Wiley, 2001
- 11. Peavy-Rowe-Tchobanoglous, Environmental Engineering, Editorial Mc Graw Hill, 1985
- 12. Pelczar, Michael J. Jr.- Chan, E.C., Elementos de Micrrobiología, Editorial Mc Graw Hill
- 13. Rich, Linvil G., Environmental Systems Engineering, Editorial Mc Graw Hill, 1973
- 14. Sanks, Robert L., *Water Treatment Plant Design for the Practicing Engineering*, Editorial Ann Arbor Science Publishers, 1978

PAGINAS OFICIALES EN INTERNET DE:

- SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) http://www.semarnat.gob.mx
- JAPAC (Junta Municipal de agua Potable y saneamiento de Culiacán) http://www.japac.gob.mx
- CONAGUA (Comisión Nacional del Agua) http://www.cna.gob.mx
- INE (Instituto Nacional de Ecología) http://www.ine.gob.mx
- EPA (Environmental protección Agency) http://www.epa.gov/espanol
- INEGI (Instituto Nacional de Estadística, Geografía e Informática) http://www.inegi.gob.mx

6. RESPONSABLES DE ELABORACIÓN DEL PROGRAMA:						
1.						
2.						
3.						
4.						
5.						
6.						